Search results for "MESH: Motor Activity"
showing 3 items of 3 documents
The polymodal sensory cortex is crucial for controlling lateral postural stability: evidence from stroke patients.
2000
International audience; In modern literature, internal models are considered as a general neural process for resolving sensory ambiguities, synthesising information from disparate sensory modalities, and combining efferent and afferent information. The polymodal sensory cortex, especially the temporoparietal junction (TPJ), is thought to be a nodal point of the network underlying these properties. According to this view, a pronounced disruption of the TPJ functioning should dramatically impair body balance. Surprisingly, little attention has been paid to this possible relationship, which was the subject of investigation in this study. Twenty-two brain-damaged patients and 14 healthy subject…
Understanding Cannabinoid Psychoactivity with Mouse Genetic Models
2007
Marijuana and its main psychotropic ingredient Δ9-tetrahydrocannabinol (THC) exert a plethora of psychoactive effects through the activation of the neuronal cannabinoid receptor type 1 (CB1), which is expressed by different neuronal subpopulations in the central nervous system. The exact neuroanatomical substrates underlying each effect of THC are, however, not known. We tested locomotor, hypothermic, analgesic, and cataleptic effects of THC in conditional knockout mouse lines, which lack the expression of CB1 in different neuronal subpopulations, including principal brain neurons, GABAergic neurons (those that release γ aminobutyric acid), cortical glutamatergic neurons, and neurons expres…
Genetic identification of neurons controlling a sexually dimorphic behaviour
2000
0960-9822 (Print) Journal Article Research Support, Non-U.S. Gov't; In the fruit fly Drosophila melanogaster, locomotor activity is sexually dimorphic: female flies constantly modulate their activity pattern whereas males show a steadier, stereotyped walking pace [1]. Here, we mapped the area of the brain controlling this behavioural dimorphism. Adult male Drosophila expressing a dominant feminising transgene in a small cluster of neurons in the pars intercerebralis exhibited a female-like pattern of locomotor activity. Genetic ablation of these neurons prevented the feminisation of the locomotor activity of transgenic males. The results suggest that this cluster of neurons modulates sex-sp…